Green ’ s matrix from Jacobi - matrix Hamiltonian ∗

نویسندگان

  • G. Lévai
  • Z. Papp
چکیده

We propose two ways for determining the Green’s matrix for problems admitting Hamiltonians that have infinite symmetric tridiagonal (i.e. Jacobi) matrix form on some basis representation. In addition to the recurrence relation comming from the Jacobi-matrix, the first approach also requires the matrix elements of the Green’s operator between the first elements of the basis. In the second approach the recurrence relation is solved directly by continued fractions and the solution is continued analytically to the whole complex plane. Both approaches are illustrated with the non-trivial but calculable example of the D-dimensional Coulomb Green’s matrix. We give the corresponding formulas for the D-dimensional harmonic oscillator as well. PACS number(s): 02.30.Rz, 02.30.Lt, 03.65.Ge, 02.60.Nm, 21.45.+v Typeset using REVTEX ∗to be published in Journal of Mathematical Physics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi - matrix Hamiltonian ∗

We propose two ways for determining the Green's matrix for problems admitting Hamiltonians that have infinite symmetric tridiagonal (i.e. Jacobi) matrix form on some basis representation. In addition to the recurrence relation comming from the Jacobi-matrix, the first approach also requires the matrix elements of the Green's operator between the first elements of the basis. In the second approa...

متن کامل

On Asymptotic Convergence of Nonsymmetric Jacobi Algorithms

The asymptotic convergence behavior of cyclic versions of the nonsymmetric Jacobi algorithm for the computation of the Schur form of a general complex matrix is investigated. Similar to the symmetric case, the nonsymmetric Jacobi algorithm proceeds by applying a sequence of rotations that annihilate a pivot element in the strict lower triangular part of the matrix until convergence to the Schur...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Casimir invariants and the Jacobi identity in Dirac’s theory of constrained Hamiltonian systems

Abstract. We consider constrained Hamiltonian systems in the framework of Dirac’s theory. We show that the Jacobi identity results from imposing that the constraints are Casimir invariants, regardless of the fact that the matrix of Poisson brackets between constraints is invertible or not. We point out that the proof we provide ensures the validity of the Jacobi identity everywhere in phase spa...

متن کامل

The separability and dynamical r-matrix for the constrained flows of Jaulent-Miodek hierarchy

We show here the separability of Hamilton-Jacobi equation for a hierarchy of integrable Hamiltonian systems obtained from the constrained flows of the Jaulent-Miodek hierarchy. The classical Poisson structure for these Hamiltonian systems is constructed. The associated r-matrices depend not only on the spectral parameters, but also on the dynamical variables and, for consistency, have to obey t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998